Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14399, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002472

RESUMO

Commercial backsheets based on polyvinylidene fluoride (PVDF) can experience premature field failures in the form of outer layer cracking. This work seeks to provide a better understanding of the changes in material properties that lead to crack formation and find appropriate accelerated tests to replicate them. The PVDF-based backsheet outer layer can have a different structure and composition, and is often blended with a poly(methyl methacrylate) (PMMA) polymer. We observed depletion of PMMA upon aging with sequential (MAST) and combined (C-AST) accelerated stress testing. In field-aged samples from Arizona and India, where PVDF crystallizes in its predominant α-phase, the degree of crystallinity greatly increased. MAST and C-AST protocols were, to some extent, able to replicate the increase in crystallinity seen in PVDF after ~ 7 years in the field, but no single-stress test condition (UV, damp heat, thermal cycling) resulted in significant changes in the material properties. The MAST regimen used here was too extreme to produce realistic degradation, but the test was useful in discovering weaknesses of the particular PVDF-based outer layer structure studied. No excessive ß-phase formation was observed after aging with any test condition; however, the presence of ß-phase was identified locally by Fourier transform infrared spectroscopy (FTIR). We conclude that both MAST and C-AST are relevant tests for screening outdoor failure mechanisms in PVDF backsheets, as they were successful in producing material degradation that led to cracking.

2.
Sci Rep ; 11(1): 2019, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479363

RESUMO

Novel methods for advancing reliability testing of photovoltaic (PV) modules and materials have recently been developed. Combined-accelerated stress testing (C-AST) is one such method which has demonstrated reliable reproduction of some field-failures which were not reproducible by standard certification tests. To increase confidence and assist in the development of C-AST, and other new testing protocols, it is important to validate that the failure modes observed and mechanisms induced are representative of those observed in the field, and not the product of unrealistic stress conditions. Here we outline a method using appropriate materials characterization and modelling to validate the failure mechanisms induced in C-AST such that we can increase confidence in the test protocol. The method is demonstrated by applying it to a known cracking failure of a specific polyamide (PA)-based backsheet material. We found that the failure of the PA-based backsheet was a result of a combination of stress factors. Photo-oxidation from ultra-violet (UV) radiation exposure caused a reduction in fracture toughness, which ultimately lead to the cracking failure. We show that the chemical and structural changes observed in the backsheet following C-AST aging were also observed in field-aged samples. These results increase confidence that the conditions applied in C-AST are representative of the field and demonstrates our approach to validating the failure mechanisms induced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...